Nanotechnology To Build Replacement Organs To Make People Taller!

For the longest time, I had thought that the researchers who look into generating and regenerating bone tissue and cartilage tissue had no plans or desire to try to get bones to be increased in size aka volumetrically increase.

I was wrong. I have been very, VERY wrong.

In a recent Discover Magazine article, I finally realized that this belief that the average orthopedic researcher looking into tissue engineering and growing replacement organs would never think of applying their knowledge for the goal of helping adults grow taller was all wrong.

Let me show you guys what I mean.

1. Buy this magazine, that might still be in magazine stands right now, in every Barnes & Noble bookstore in the country. “Discover Magazine Series – Secrets of the Human Body” – SCB014 2016 – (UPC: 074470583509)

2. Flip to page 143, and read that single article. It is entitled “Extreme Enhancement – How Nanotechnology could turn us into 8 ft-tall super-athletes” by Mark Miodownik (University College London) –

Let’s just take 2 paragraphs from this article, the 1st and the 4th.

1st paragraph

“One of the most powerful applications of nanotechnology is the design of replacement organs, such as livers, kidneys, and eventually hearts. This will have an enormous impact on those in urgent need of donor organs, but also opens up the possibility of super-organs.”

4th paragraph

“Bioscaffolds are also successfully being used to develop replacement bone for reconstructive surgery. Whole bones can’t be created yet, but success in this arena will not only change the science of hip replacement, it may also lead to new type of cosmetic surgery in which wholesale changes to body shape are carried out. Want a pair of long, slender legs? Have a pair grown for you – and why stop at 6 ft?”

My Personal Interpretation

Reread the 4th paragraph, and tell me how you the reader interpret what he is saying. This guy has admitted that one of the main goals of tissue engineers and biomedical engineers have always had when it comes to figuring out how to regrow full bones was to allow people to possibly grow taller, as adults to the height and size that they want.

I once asked my friend who is a software engineer who works on really crazy high level technical problems why it seems that the young full of energy startup computer entrepreneurs never take on the really hard, really important questions. What he said to me made me change the way I thought about things completely. I was complaining that it seemed like you would have groups of MIT trained CS majors who decide to try to start the 17th health data collection app or the 34th payment system app, which has already been done multiple times before. Why do these young kids only work on simple, easy problems? It turns out it makes the logical sense. Once you have become successful and have made some money from creating that small app, then you move onto something bigger, a much bigger and harder problem when you have more people, employees, and capital.

The point is this: For the longest time, I have been complaining about the fact that no tissue engineering researcher or group who is trying to regenerate hyaline cartilage has ever come out publicly or claimed that the reason they are trying to do their project was because they wanted to regenerate new epiphyseal cartilage which will be re-implanted into human bone tissue, to expand and volumetrically grow the size of that bone. That is essentially increasing the human body’s height using tissue engineering. It turns out the reason they have not is because the problem is too big, too crazy, and too out of reach. It is smarter to start with an easier problem, just trying to regrow the hyaline layer of cartilage in the articular cartilage of the ends of the long bones in the legs.

I had written a post about a month ago showing that the world’s current hottest Biomedical startup is Samumed, which has their own treatment/injection which is supposed to treat osteoarthritis aka cartilage degeneration. A Venture Capitalist had said that if you can get just 1 mm of articular cartilage regenerated from a simple injection, the company that is created from it would be even bigger than Apple. Solving the medical condition of osteoarthritis is much easier, and feasible than getting a full hyaline cartilage with mesenchymal stem cells embedded in the exact correct formation grown in the lab. This is the intermediate step, which is already a multi-billion dollar opportunity for anyone who has success.

Basic message: Start with something small, and easy, and once you gain some success, you move onto the bigger, harder problems.

So far, let’s to a recap of the teams of researchers which are either really close, or already there.

  1. EpiBone: Professor Warren Grayson and Professor Gordana Novakovic will be involved as scientific advisors for this lab-to-reality company. The Paypal and Palantir founder billionaire Peter Thiel has put his own money to back this venture.
  2. Teplyashin’s Team: They got the tissue engineering approach to lengthen bones to work out years ago but they were stopped from testing this bone lengthening technique on humans by the Russian government.
  3. Robert Ballock and Eben Alsberg’s Research: Their research grant filed with the USA government was completed months ago and their published papers show that it was successful.
  4. Lawrence Bonnasar’s team: His work at Cornell and the whole spinal implant shows a lot of promise, which I had written multiple posts about before.
  5. Atala’s team: His research at Wake Forest University and the pictures of the lab grown fibrocartilage ear scaffolds are sort of the classic. His team probably won’t be the one to get the hyaline cartilage generation done first though.
  6. CellInk – Any company that does 3D-Bioprinting, using stem cell infused medium ink will help with the cause. I personally met the Swedish company’s founder, and his son in a Tissue Engineering conference last year. Super nice guy.

Termis Conference: The termis conference is THE biomedical conference that anyone who is interested in trying to figure this thing out should be attending. The word Termis refers to Tissue Engineering and Regenerative Medicine International Society. This is the EXACT niche area of study who will definitely be the group who figures out this problem. In the past years of the annual Termis Conferences, the key people who I have said we should be following their work have attended it.

Overall Message: The people who are trying to regrow bone and cartilage tissue using the basic tissue engineering method of using a scaffold seeded with stem cells and than lab grown (aka in vitro) has always understood the possibility and implications of using their technology to make people taller.

One thought on “Nanotechnology To Build Replacement Organs To Make People Taller!

  1. Researcher

    http://www.goodnewsfinland.com/finnish-company-develops-painless-limb-lengthening-treatment/
    You’re saying that bone is as hard as stainless steel, but its Young modulus is much lower than that of stainless steel (meaning bones are more elastic). Check here: https://en.wikipedia.org/wiki/Mechanical_properties_of_biomaterials .
    It seems to me that an easy method of increasing height’s already there (at least if your epiphyseal plate haven’t ossified yet), but too many scientists are missing some simple facts and sufficient level of attention haven’t been reached. Unfortunately, I don’t have time to write a more descriptive comment right now.
    Greetings.

Comments are closed.