Author Archives: Tyler

Chondroprotection as a mechanism for height growth

This is a Hiroki Yokota study who along with Ping Zhang is one of the prime developers of lateral loading modalities.

Generation of the Chondroprotective Proteomes by Activating PI3K and TNFα Signaling

“Chondrosarcoma and inflammatory arthritis are two joint-damaging diseases. Here, we examined whether a counterintuitive approach of activating tumorigenic and inflammatory signaling may generate joint-protective proteomes in mesenchymal stem cells and chondrocytes for the treatment of chondrosarcoma and inflammatory arthritis{we already kind of know that low levels of inflammatory signaling is beneficial, it’s too much that’s the problem}. While activating PI3K signaling and the administration of TNFα to chondrosarcoma cells and chondrocytes promoted tumor progression and inflammatory responses, those cells paradoxically generated a chondroprotective conditioned medium. Notably, the chondroprotective conditioned medium was enriched with Hsp90ab1 that interacted with GAPDH. Extracellular GAPDH interacted with L1CAM, an oncogenic transmembrane protein, and inhibited tumorigenic behaviors, whereas intracellular GAPDH downregulated p38 in chondrocytes and exerted anti-inflammatory effects. The result supports the unconventional approach of generating chondroprotective proteomes.”

“We employed mesenchymal stem cells and chondrocytes to generate chondroprotective proteomes{proteomes are essentially a collection of proteins} by activating PI3K signaling and the administration of TNFα.”

“In response to chemotherapeutic agents, the reverse behavior of resilient cancer cells is frequently observed. While their tumorigenic action may initially be suppressed, cells tend to develop drug resistance and gradually strengthen their progression”

“Chronic inflammation is reported to facilitate tumor progression, while the induction of inflammation may contribute to suppressing tumorigenesis by stimulating immune responses”

“Besides chondrocyte-derived CM, MSC-derived CM, as well as MH7a synovial cell-derived CM, were converted to tumor suppressive by the treatment with YS49, an activator of PI3K signaling. Their application reduced the level of TNFα and MMP13 in C28/I2 chondrocytes”

“Hsp90ab1, a heat shock protein acting as a molecular chaperon, showed the most pronounced anti-inflammatory effect in C28 chondrocytes by downregulating TNFα and MMP13”

” the chondroprotective proteome can be generated from MSCs and chondrocytes by activating PI3K signaling with YS49 and treating them with TNFα. When switched on, both PI3K and TNFα signalings acted tumorigenic in CS cells and inflammatory in chondrocytes. However, YS49 and TNFα converted skeletal host cells such as MSCs and chondrocytes into iTSCs and iISCs, and they generated tumor-suppressive and inflammation-suppressive CMs. We observed that YS49 and TNFα-treated CMs inhibited the proliferation, migration, and invasion of CS cells. Those CMs downregulated Runx2 and MMP9 in CS cells, as well as NFATc1 and cathepsin K in osteoclasts, whereas they decreased TNFα and MMP13 in chondrocytes”

Ginza Kojima seems to have a new height increase device

Natural Height Growth has written about Ginza Kojima’s devices before.  The device appeared to be some kind of traction device with a rotational force applied.  The centripetal force could potentially stretch the body.  But all these forces ultimately have to lead to some kind of plastic deformation(permanent stretch of the bone or cartilage).  I speculated previously that the green light may be some kind of radiation that weakens the bone which allows it to be permanently stretched.

Here’s Ginza Kojima’s new website: http://www.shincho-nobashi.jp/

It looks like it applies a rotational/twisting force on the leg combined with some kind of pressure.

It looks like it’s mainly for small amounts of height as taken by this excerpt below.

In the case of the whole body course (guarantee course), it is 500,000 yen up to 1 cm, 1,300,000 yen up to 2 cm, and 2,300,000 yen up to 3 cm. (Excluding tax ※ Consumption tax will apply separately)

In the case of the knee and foot bone course (guarantee course), it is 1 million yen to 1 cm, 2 million yen to 2 cm and 3 million yen to 3 cm. (Excluding tax ※ Consumption tax will apply separately)

Please inquire for detailed charges for 3 cm and beyond.”

One limb length testimonial though advertised in the site is for 5 cm which you cannot realistically achieve without actual major bone growth.

The effects of the treatment are very individual differences and it is not known how long it will take without actually starting the treatment.

In our hospital, we guide you to receive the treatment once a week 24 times (about 6 months) as a rough guide. In addition, we offer a course that you can receive intensive treatment for a week as a short-term intensive course, so please consult with distant people.”

<-so looks like once a week for 6 months.

The current treatment schedule at our hospital is as follows.

  • 1st time 10:00 to 12:00 (30 minutes set time)
  • Second time 12:30-14:00
  • Third time 14:30-16:00

As mentioned above, an average of 3 sets is given daily. The second and subsequent treatments are basically the same, but we will make adjustments to suit your convenience as much as possible, so please contact us.”<-and 3 sessions of 30 minutes.

This machine advertised elsewhere on the site looks like a traction machine

Gina kojima explains the science behind his thinking here:

“First of all, I thought it would be good to pull. When I grabbed the bones of the foot from both sides and pulled it with a slight force according to the tug of war and the principle of childhood, I thought that it would be fine because the blood vessels became thinner and blood flow would improve. The heart is pumping 6 liters of blood a minute, so the blood vessels become thin if you pull a round blood vessel, and it is the theory that so much pressure will be applied to improve blood flow. It has been 40 years since I started making machines. To be honest, it will be dozens already. Anyway, it is said that if you look at it, why do you spend so much money to make stupid tools, and it keeps making it anyway.”

So this quote makes it seem like a traction device but a lot of traction devices don’t necessarily pull the bone to induce plastic deformation.

As far as traction devices go, you have to either induce plastic deformation in the bone or you have to stimulate the body to grow.

I think the whole body course is the traction machine and the knee course is the elevated height speed machine 2 device.

I think elevated height speed machine 2 device may just be another traction device but specifically for the knee.  Any japenese translators?

Articular cartilage versus growth plate cartilage

I am still working on finding a method to grow taller.  A lot of it is self testing as not a lot of the published papers published lately show promise of non surgical longitudinal bone growth that I could see.

Mechanisms of synovial joint and articular cartilage development

“Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage{Could we inject these cell sources into the articular cartilage?  Could we mimic the molecules and signaling pathways with various stimuli?}. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. .”

“Matured articular cartilage is also referred to as hyaline cartilage because of its translucent appearance that reflects its unique constituents, such as type II collagen, glycosaminoglycans (GAGs), and low cellularity. In addition, articular cartilage does not have blood vessels, lymphatic vessels, or nerves. Articular chondrocytes produce extracellular matrices and maintain their environment with very little or no cell turnover{we want cell turnover, HGH increases cell turnover and HGH can make you very tall in certain circumstances}”

” most parts of articular cartilage derive from different lineages from the growth plate cartilage. The first signs of joint development are presented by the appearance of condensed flattened cells at the presumptive joint site within a pre-cartilage tissue known as the interzone, the origin of the joint. Removal of the interzone from a chick embryo leads to an uninterrupted long bone lacking joints, indicating that the interzone provides segmentation of skeletal elements in limbs. The interzone arises from mesenchymal/pre-cartilaginous tissue in which the cells initially express chondrocyte marker genes such as type II collagen, aggrecan, and matrillin-1 ”

“Instead of the decreased expression of these chondrogenic markers, the interzone cells acquire the expression of growth differentiation factor 5 (Gdf5), formerly known as bone morphogenetic protein 14 (BMP14), or cartilage derived morphogenetic protein 1 (CDMP1). Gdf5 is a representative marker for the interzone during early joint development. In addition to Gdf5, Wnt4, Wnt9a (formerly known as Wnt14), Wnt16, Erg, doublecortin, and Gli are also expressed in the interzone”

“Gdf5-expressing cell lineage gives rise to all mature joint structures including articular cartilage, meniscus, ligaments, and synovium ”

” joint components are formed by the integration of peripheral cells in joint development. Epiphyseal chondrocytes migrate into the interzone at early stages, and the external regions of joints such as the synovium/joint capsule and outer parts of the meniscus are mainly composed of lately integrated cells. Thus, the fate of embryonic interzone cells, the surrounding cells, and their progeny cells may be determined by their spatiotemporally environment. “<-so growth plate cells become integrated into the articular cartilage interzone cells but these cells are affected by the articular cartilage cells and microenvironment so that the articular cartilage overall environment is unaltered.  Maybe we can do the reverse and make the articular cartilage more growth plate like…

“IHH is produced from pre-hypertrophic chondrocytes and up-regulates PTHrP expression in peri-articular chondrocytes. PTHrP inhibits the differentiation of proliferating chondrocytes into pre-hypertrophic chondrocytes. This feedback loop determines the length of long bones. Before the feedback loop, pre-hypertrophic chondrocytes around the center of anlagen are associated with interzone generation through the secretion of IHH. The loss of IHH causes not only dwarfism but also joint fusion in distal limb joints ”

“excessive IHH signaling activity in the interzone progeny induces ectopic cartilage formation in the knee ”

“Unlike in endochondral ossification, IHH and PTHrP seem to be independent in interzone generation and joint development. The genetic alteration of PTHrP causes the impairment of endochondral ossification, but no severe changes in joints. Even after IHH signaling becomes silent, PTHrP-expressing cells exist in articular cartilage over a lifetime. Recombinant human PTH (1–34) suppresses osteoarthritis development, and PTH/PTHrP signaling induces lubricin”<-Can we use this fact to become taller?

Interesting study that explains why there are secondary ossification centers

Those who say that weightlifting stunts growth will have a field day with this one.  Small animals were used and if the loads mentioned in the study caused as much apoptosis then growth would be severly stunted by weight loading.  But if it indicated some cellular regeneration in regards to unplanned apoptosis due to mechanical that would be an amazing breakthrough.  We could trick the cells into thinking there was more apoptosis than there was and that would lead to overgrowth.

Secondary ossification centers evolved to make endochondral bone growth possible under the weight-bearing demands of a terrestrial environment

“The growth of long bones occurs in narrow discs of cartilage, called growth plates that provide a continuous supply of chondrocytes subsequently replaced by newly formed bone tissue. These growth plates are sandwiched between the bone shaft and a more distal bone structure called the secondary ossification center (SOC). We have recently shown that the SOC provides a stem cell niche that facilitates renewal of chondro-progenitrors and bone elongation. However, a number of vertebrate taxa, do not have SOCs, which poses intriguing questions about the evolution and primary function of this structure. Evolutionary analysis revealed that SOCs first appeared in amniotes[essentially egg laying reptiles, birds, and mammals] and we hypothesized that this might have been required to meet the novel mechanical demands placed on bones growing under weight-bearing conditions. Comparison of the limbs of mammals subjected to greater or lesser mechanical demands revealed that the presence of a SOC is associated with the extent of these demands. Mathematical modelling with experimental validation showed that the SOC reduces shear and normal stresses within the growth plate; while relevant biological tests revealed that the SOC allows growth plate chondrocytes to withstand a six-fold higher load before undergoing apoptosis{this provides evidence that too high a load could stunt growth}. Hypertrophic chondrocytes, the cells primarily responsible for bone elongation, were the most sensitive to loading, probably due to their low Young’s modulus (as determined by atomic force microscopy). Our present findings indicate that the primary function of the evolutionary delineation of epiphyseal cartilage into spatially separated growth plates was to protect hypertrophic chondrocytes from the pronounced mechanical stress associated with weight-bearing in a terrestrial environment.”

“hypertrophic chondrocytes undergo apoptosis or trans-differentiation, leaving their calcified extracellular matrix as a scaffold on which invading blood vessels and osteoblasts form new bone tissue.”<-interesting that the acknowledge the transdifferentiation theory.

“commonly to study bone growth (i.e., mice, rats and rabbits), the growth plate is separated from the articular cartilage by a bony fragment, the secondary ossification center (SOC). This skeletal element, formed during early postnatal development, splits the initially contiguous cartilaginous element into two independent structures, the growth plate and articular cartilage ”

“Growth plate chondrocytes appeared to be highly sensitive to load, with 40% dying upon application of a 1N load (as revealed by propidium iodide (PI) staining). At the same time, the SOC clearly protected these cells, allowing them to withstand a load an order of magnitude higher ”  An order of magnitude would be 10N

“directional compressive stress appears to be harmful to chondrocytes, especially hypertrophic chondrocytes”

Study finds chocolate increases longitudinal bone growth

Update:  I’m still working on a new non-LSJL method.

I don’t believe that chocolate can make you wildly taller but it tastes good.  I also think the optimal diet for longitudinal bone growth varies on developmental stage.

Chocolate and Chocolate Constituents Influence Bone Health and Osteoporosis Risk

“Bone loss resulting in increased risk of osteoporosis is a major health issue worldwide. Chocolate is a rich source of antioxidant/anti-inflammatory flavonoids as well as dietary minerals with the potential to benefit bone health. However, other chocolate constituents such as cocoa butter, sugar and methylxanthines may be detrimental to bone. Human studies investigating the role of chocolate consumption on serum bone markers and bone mineral density (BMD) have been inconsistent. A contributing factor is likely the different composition and thereby, nutrient and bioactive content amongst chocolate types. White, followed by milk chocolate, are high in sugar and low in flavonoids and most minerals. Dark chocolate (45-85% cocoa solids) is high in flavonoids, most minerals, and low in sugar with ≥70% cocoa solids resulting in higher fat and methylxanthine content. The aim of this review was to examine the relationship between consuming chocolate, its flavonoid content, and other chocolate constituents on bone health and osteoporosis risk. Studies showed postmenopausal women had no bone effects at moderate chocolate intakes; whereas, adolescents consuming chocolate had greater longitudinal bone growth{whether this fact can be used for any purpose though….}. Based on flavonoid and mineral content, unsweetened cocoa powder appeared to be the best option followed by dark chocolate with higher cocoa content in terms of supporting and preserving bone health. Determining dietary recommendations for chocolate consumption regarding bone health is important due to the growing popularity of chocolate, particularly dark chocolate, and an expected increase in consumption due to suggestions of health benefits against various degenerative diseases.”

“Diets that promote bone health have mainly focused on increasing Ca and
vitamin D consumption, but there is growing interest in phytochemicals[chemicals produced by plants]”

“Dietary polyphenols consist of a large group of plant-derived secondary metabolites
divided into four different classes, one of which is the flavonoids (diphenylpropanes C6-C3-C6).
Flavonoids contain several classes of bioactive compounds.  There is evidence
that intake of specific flavonoids may promote bone health including: soybean isoflavones (e.g. genistein{genistein may increase HSP90 levels and HSP90 definitely affects the growth plate but in some instances it stimulated growth and some incidences suppressed it} and daidzein), flavonols (e.g. aglycone quercetin{quercetin definitely impacts factors involved in longitudinal bone growth but the evidence is not that strong}) found in plums, and flavonones (e.g. hesperidin) found in citrus pulp and juice.  Another food source noted for its flavonoid content is chocolate.  Cocoa, a major constituent in chocolate, has the highest flavanol content of all foods on a per-weight basis and contributes to greater total dietary intake of flavonoids than tea, fruits, and vegetables ”

“Both animal models and human clinical trials have reported an inverse association
between reactive oxygen species (ROS) and bone health.  ROS can affect bone cells in
various ways including stimulation of osteoblast apoptosis and senescence and by upregulation of receptor activator of nuclear factor kappa-B ligand (RANKL) to activate osteoclast differentiation and bone resorption”<-I think though there is a role for ROS.  It’s just too many is a bad thing.  And bone can be inhibitory towards longitudinal bone growth but it’s degradation of bone(bone turnover) not degradation of bone building cells that would be beneficial.

“catechins preserved bone-forming osteoblasts by exerting anti-inflammatory actions”

” In a randomized, double-blinded placebo-controlled study, pre-pubertal (n=149, age 6.6-9.4 years) girls consumed two Ca-supplemented food products daily to achieve a Ca dose of 850 mg/d.  Results showed consuming Ca-supplemented chocolate bars, cakes or cocoa beverages for 48 weeks significantly increased height and bone mass acquisition in the radius and femur

“Feeding murine dams chow diet supplemented with 400 mg unsweetened chocolate during pregnancy and lactation resulted in progeny with significantly shortened forefeet and hindlimbs.  Vascular endothelial growth factor (VEGF), which plays a role in ontogenesis and longitudinal bone growth related to angiogenesis in the epiphyseal growth plate, was significantly reduced in the femora of immature (age 4-weeks old) mice pups exposed perinatally to chocolate.  A follow-up study investigating the relationship of the chocolate constituent, catechins on angiogenesis and bone mineralization in the progeny of murine dams fed chocolate showed a negative correlation between embryo tissue epigallocatechin concentration and mean number of newly-formed blood vessels.  Crystallinity of compact bone of diaphyses was 17% greater and femoral epiphyseal cancellous bone was 30% greater in pups age 4-weeks old exposed perinatally to chocolate compared to pups from control dams.  The authors suggested anti-angiogenic activity of chocolate catechins disturbed the processes of bone elongation and mineralization “<-so chocolate may be better at different stages.

Here’s the study on chocolate(along with other calcium enriched foods) consumption in girls:

Calciumenriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial.

“High calcium intake during childhood has been suggested to increase bone mass accrual, potentially resulting in a greater peak bone mass. Whether the effects of calcium supplementation on bone mass accrual vary from one skeletal region to another, and to what extent the level of spontaneous calcium intake may affect the magnitude of the response has, however, not yet been clearly established. In a double-blind, placebocontrolled study, 149 healthy prepubertal girls aged 7.9+/-0.1 yr (mean+/-SEM) were either allocated two food products containing 850 mg of calcium (Ca-suppl.) or not (placebo) on a daily basis for 1 yr. Areal bone mineral density (BMD), bone mineral content (BMC), and bone size were determined at six sites by dual-energy x-ray absorptiometry. The difference in BMD gain between calcium-supplemented (Ca-suppl.) and placebo was greater at radial (metaphysis and diaphysis) and femoral (neck, trochanter, and diaphyses) sites (7-12 mg/cm2 per yr) than in the lumbar spine (2 mg/cm2 per yr). The difference in BMD gains between Ca-suppl. and placebo was greatest in girls with a spontaneous calcium intake below the median of 880 mg/d. The increase in mean BMD of the 6 sites in the low-calcium consumers was accompanied by increased gains in mean BMC, bone size, and statural height. These results suggest a possible positive effect of calcium supplementation on skeletal growth at that age. In conclusion, calciumenriched foods significantly increased bone mass accrual in prepubertal girls, with a preferential effect in the appendicular skeleton, and greater benefit at lower spontaneous calcium intake.”

“Both statural height and body weight, however, were significantly greater among the spontaneously high- versus low-calcium consumers (129.160.7 vs. 126.560.7 cm, P , 0.001; 27.560.5 vs. 25.760.5 kg, P , 0.001, respectively). ”

There were several non calcium enriched foods in the study and not just chocolate so it’s likely the calcium and not the chocolate making the girls taller.

Researching Ischemia may be key to proving that hydrostatic pressure can induce neochondrogenesis

Ischemia is reduced blood supply to an organ(in our case we would be interested in cartilage and bone).

“Ischemic osteonecrosis is a process that involves impaired outflow of blood from the marrow space, increased intramedullary blood pressure, and reduced blood flow circulation in the bone marrow. This results in the death of osteocytes and other marrow tissues.” from Ischemic Osteonecrosis.  Now obviously osteonecrosis is not what we want but there’s a difference between doing cardio to induce an oxygen debt and choking yourself to death.  It’s a matter of severity.  If we can induce healthy, moderate ischemia(“Ischemia is a restriction in blood supply to tissues”) then that may be enough for neo chondrogenesis.  Maybe via something like occlusion bands?  It looks like intramedullar pressure is not what can induce possible chondrogenic adaptation but likely enhanced blood flow as a result of transient ischemia.

They’ve already kind of studied the effects of knee loading on osteonecrosis and found that it protects against it in “Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing

But we know that osteonecrosis increases intramedullary pressure so we can study this to see if it can prove that theory that increase intramedullary pressure can induce neo-chondrogenesis.

“Intramedullary pressures in osteonecrosis can be 5 times greater than normal because of backup pressure.”

“Shock wave therapy is based on the principles of ultrasonic lithotripsy and success in treating orthopedic neuralgias. Inducing micro-trauma by treatment of ischemic jawbones with an extra-oral ultrasonic wand can induce new circulation and bone regrowth”

Where there is more bleeding, more bone will follow.” <-it’s probably not the ischemia that can induce anabolic effects but the overcompensation that occurs when blood flow returns to normal.  Sort of like the oxygen debt and exercise.  It may be the changes in blood flow that have the beneficial effects rather than the restriction itself.

Femoral Head Deformation and Repair Following Induction of Ischemic Necrosis

“Ischemic necrosis of the femoral head can be induced surgically in the piglet. We used this model to assess femoral head deformation and repair in vivo by sequential magnetic resonance imaging and by correlating end-stage findings with histologic assessments.

Ischemic necrosis of the femoral head was induced in ten three-week-old piglets by tying a silk ligature around the base of the femoral neck (intracapsular) and cutting the ligamentum teres. We used magnetic resonance imaging with the piglets under general anesthesia to study the hips at forty-eight hours and at one, two, four, and eight weeks. Measurements on magnetic resonance images in the midcoronal plane of the involved and control sides at each time documented the femoral head height, femoral head width, superior surface cartilage height, and femoral neck-shaft angle. Histologic assessments were done at the time of killing.

Complete ischemia of the femoral head was identified in all involved femora by magnetic resonance imaging at forty-eight hours. Revascularization began at the periphery of the femoral head as early as one week and was underway in all by two weeks. At eight weeks, magnetic resonance imaging and histologic analysis showed deformation of the femoral head and variable tissue deposition. Tissue responses included (1) vascularized fibroblastic ingrowth with tissue resorption and cartilage, intramembranous bone, and mixed fibro-osseous or fibro-cartilaginous tissue synthesis and (2) resumption of endochondral bone growth{Obviously resumption of endochondral bone growth in adults would be what we want}. At eight weeks, the mean femoral head measurements (and standard error of the mean) for the control compared with the ligated femora were 10.4 ± 0.4 and 4.8 ± 0.4 mm, respectively, for height; 26.7 ± 0.8 and 31.2 ± 0.8 mm for diameter; 1.1 ± 0.1 and 2.3 ± 0.1 mm for cartilage thickness; and 151° ± 2° and 135° ± 2° for the femoral neck-shaft angle. Repeated-measures mixed-model analysis of variance revealed highly significant effects of ligation in each parameter (p < 0.0001).

Magnetic resonance imaging allows for the assessment of individual hips at sequential time periods to follow deformation and repair. There was a variable tissue response, and histologic assessment at the time of killing was shown to correlate with the evolving and varying magnetic resonance imaging signal intensities. Femoral head height on the ischemic side from one week onward was always less than the initial control value and continually decreased with time, indicating collapse as well as slowed growth. Increased femoral head width occurred relatively late (four to eight weeks), indicating cartilage model overgrowth concentrated at the periphery.”

“At higher magnification, the tissue was vascularized fibrocartilage.”<-this is good because fibrocartilage indicates possibly new cartilage(neo growth plates).

Increased vessels within the lateral epiphyseal cartilage were frequently seen, many of which eventually became associated with ectopic foci of endochondral ossification.”<-ectopic means abnormal which could mean new growth plates.

“Greater cartilage height was observed in the ligated group compared with contralateral, control femoral heads at two weeks (F = 9.6, p = 0.003), four weeks (F = 33.4, p < 0.0001), and eight weeks (F = 55.7, p < 0.0001).”

Quantification of Angiogenesis in Otosclerosis

“The determinants of clinical versus histologic otosclerosis{“Otosclerosis is a condition where one or more foci of irregularly laid spongy bone replace part of normally dense enchondral layer of bony otic capsule in the bony labyrinth.”} are unknown, but angiogenesis is associated with active disease. We hypothesized that quantification of angiogenesis in otosclerotic human temporal bones could reveal significant differences between clinical and histologic cases.

Study Design: We reviewed all otosclerosis specimens meeting criteria from the temporal bone collection of the Massachusetts Eye and Ear Infirmary and 10 normal controls.

Methods: Digital images were taken at predilection sites, followed by computer‐assisted analysis. Canalicular area (CA), the aggregate of vascular spaces within bone, microvessel density (MVD), area, and depth were the main measures. Evidence of a direct connection between local vessels and the vasculature of the otosclerotic focus was also recorded for each specimen.

Results: The average area (mm2) and depth (number of sections containing otosclerosis) of clinical lesions was significantly greater than histologic lesions. Total microvessel counts were significantly greater in clinical versus histologic lesions, and both clinical and histologic lesions contained significantly greater numbers of microvessels than the normal otic capsule. CA was also significantly higher in clinical lesions. MVD was slightly but not significantly higher in clinical lesions. Importantly, a direct connection between named vessels and the otosclerotic vasculature was significantly more frequent in clinical lesions.

Conclusions: Computer‐assisted quantification revealed significantly greater measures of angiogenesis in clinical versus histologic otosclerosis. Direct connection to adjacent vessels may support angiogenesis in this disease. Sustained angiogenesis may be an important determinant of clinical otosclerosis.”

“otosclerosis resulted from instability in embryonic cartilage rests called “globuli interossei.” Because these rests are remnants of incomplete endochondral ossification, one possibility is that otosclerotic bone represents resumption of arrested endochondral ossification in the globuli interossei.”

Indirect evidence for resumed endochondral ossification within the globuli interossei exists in otosclerotic temporal bones: otosclerotic bone demonstrates a woven pattern on polarized light microscopy identical to immature woven bone formed at sites of endochondral ossification

“Angiogenesis is critical for the conversion of cartilage to bone to the extent that animal models of endochondral ossification are used to assess candidate angiogenesis inhibitors”

“The development of otosclerosis requires angiogenesis, which may reflect resumed endochondral ossification of the globuli interossei.”

Quantifying the effect of ischemia on epiphyseal growth in an extremity replant model

“Warm ischemia (21°C) of 0, 2, 4, 6, or 8 hours was produced in a modified hindlimb preparation of 35 10-week-old Lewis rats by amputation. Subsequent microvascular anastomoses of each hindlimb to a syngeneic animal was done after which fluorochrome bone labels were administered 5 minutes after operation and on day 14 after operation. Epiphyseal plate growth (that between bone labels) was analyzed histomorphometrically and statistically. Epiphyseal plate growth was found to have a linear inverse relationship to ischemia time. Overgrowth occurred at all ischemic periods except 8 hours, and vascular pedicle patency decreased as ischemia time progressed.”

“Early clinical reports suggested that epiphyseal growth after replantation might be an all-or-none phenomenon, with overgrowth not uncommon”

“warm ischemia in a young rat hindlimb replant model. In general, at time periods of total warm ischemia between 0 and 4 hours, epiphyseal overgrowth (up to three times that of control hindlimbs) and excellent vascular pedicle patency may be expected. At 6 hours of total warm ischemia some minor epiphyseal overgrowth and good to fair vascular patency can be expected. At 8 hours of total warm ischemia and later, normal or retarded epiphyseal growth and poor vascular patency rates are expected.”

That 8 hours did not induce overgrowth likely means that the growth stimulation is not due to the ischemia itself but due to the compensation afterwards.

Ischemia’s effects may be due to hypoxia.

Effect of Hypoxia on Gene Expression of Bone Marrow‐Derived Mesenchymal Stem Cells and Mononuclear Cells

“MSC have self‐renewal and multilineage differentiation potential, including differentiation into endothelial cells and vascular smooth muscle cells. Although bone marrow‐derived mononuclear cells (MNC) have been applied for therapeutic angiogenesis in ischemic tissue, little information is available regarding comparison of the molecular foundation between MNC and their MSC subpopulation, as well as their response to ischemic conditions. Thus, we investigated the gene expression profiles between MSC and MNC of rat bone marrow under normoxia and hypoxia using a microarray containing 31,099 genes. In normoxia, 2,232 (7.2%) and 2,193 genes (7.1%) were preferentially expressed more than threefold in MSC and MNC, respectively, and MSC expressed a number of genes involved in development, morphogenesis, cell adhesion, and proliferation, whereas various genes highly expressed in MNC were involved in inflammatory response and chemotaxis. Under hypoxia, 135 (0.44%) and 49 (0.16%) genes were upregulated (>threefold) in MSC and MNC, respectively, and a large number of those upregulated genes were involved in glycolysis and metabolism. Focusing on genes encoding secretory proteins, the upregulated genes in MSC under hypoxia included several molecules involved in cell proliferation and survival, such as vascular endothelial growth factor‐D, placenta growth factor, pre‐B‐cell colony‐enhancing factor 1, heparin‐binding epidermal growth factor‐like growth factor, and matrix metalloproteinase‐9[extracellular matrix remodeling], whereas the upregulated genes in MNC under hypoxia included proinflammatory cytokines such as chemokine (C‐X‐C motif) ligand 2 and interleukin‐1α. Our results may provide information on the differential molecular mechanisms regulating the properties of MSC and MNC under ischemic conditions.”

image

There are some anabolic genes in here(table 2).image

Anabolic Pathways(table 4).

Spontaneous regeneration can occur after osteonecrosis

Spontaneous regeneration of the mandible following hemimandibulectomy for medication-related osteonecrosis of the jaw

“oral function including mobility of the tongue and buccal mucosa may influence spontaneous regeneration of the mandible”