Author Archives: Tyler

LSJL Studies 4: Some LSJL effects summarized

Unfortunately, not a lot of insight for LSJL for height growth as most of the effects are those related to the ability of joint loading to inhibit catabolism.

Mechanical intervention for maintenance of cartilage and bone.

Moderate loads to the synovial joint suppress the expression levels of matrix metallproteinases (MMPs), while loads above a threshold tend to increase their destructive activities{although some catabolic effects of MMPs may be good for height growth, as MMPs may degrade bone allowing for cartilage growth}.

“Moderate shear stress(2–5 dyn/cm2) reduced MMP expression levels, while high shear stress (10–20 dyn/cm2) increased them. Moderate hydrostatic pressure (1–5 MPa) suppressed MMP-1 expression, while higher loads (10 MPa) elevated it.”<-Since I have gotten more results with higher clamping force it could indicate that increased MMP expression is crucial to induce new length growth.

“The required magnitude of loads for joint loading is in general smaller than that for axial loading (e.g. 0.5 N for elbow loading and 2–3 N for ulna axial loading in mice). Bone is less stiff in a lateral direction than an axial direction.”<-Note that more than 0.5N(100N is mentioned) is likely required for humans. 0.5N is what was used in the mouse arm lengthening study.

“Joint loading periodically alters the pressure in the medullary cavity and activates molecular transport in a lacunocanalicular network in cortical bone.”<-It is our hypothesis that this increase in pressure in the medullary cavity induces chondrogenic differentiation.  The medullary cavity is continuous into the spaces of the spongy bone of the epiphysis.  It is these spaces where we aim to induce chondrogenic differentiation and thus induce endochondral ossification to grow taller.

“A pressure gradient in the medullary cavity generates oscillatory fluid flow in the porous bone cortex. Induced fluid flow then enhances molecular transport in the lacunocanalicular network and applies shear stress to osteocytes residing in lacunae”

“A pressure gradient in the medullary cavity generates oscillatory fluid flow in the porous bone cortex.”<-and fluid flow into the spongy bone spaces of the epiphysis and the increased MMP expression could allow the neo-growth plates to spread to other parts of the bone but this is highly speculative.

“Modulation of the intramedullary pressure with knee loading is exerted throughout the length of the tibia and the femur.”<-the epiphysis is part of the entire length thus knee loading like by LSJL alters pressure in the epiphysis.

“Proinflammatory cytokines such as IL-1β upregulate the expression and activity of MMP-1 and MMP-13. [In] cultured chondrocytes mechanical stimulation, given in a form of fluid flow shear stress, can suppress the IL-1β-induced upregulation of MMP-1 and MMP-13. In accordance with those in vitro results, joint motion in vivo is able to reduce inflammatory responses in a murine collagen-induced arthritis model. Additionally, in an antigen-induced arthritis model in rabbits, continuous passive motion suppressed transcription of IL-1β and synthesis of inflammatory mediator COX-2 and MMP-1. These mechanical signals also induced IL-10 synthesis, suggesting that moderate joint loading can generate anti-inflammatory signals.”<-MMP’s have complicated effects on height growth.  MMP-1 and MMP-13 are vital for the endochondral ossificatiion process.

“When knee loading was applied to one leg, the loaded tibia and femur were reported to be longer than the non-loaded contralateral bones. In response to knee loading, the number of cells in the growth plate of the proximal tibia increased and their cellular shape was altered.“<-If LSJL increases the number of cells in the growth plate by differentiation of stem cells into chondrocytes than LSJL will work in adults as well.  It’s possible that during knee loading only chondrocyte proliferation was increased but chondrocytes have a finite proliferative capacity and an increase in chondrocyte proliferation without increasing stem cell differentiation into chondrocytes should accelerate the the transition of proliferating chondrocytes into hypertrophic chondrocytes and not the number of cells in the growth plate.

Homeostasis of the articular cartilage is affected through interactions with the subchondral bone underneath the cartilage.  Both MMPs and ADAMTS need to be post-translationally activated, and this activation process is regulated by many factors including MMPs themselves and many proteoglycans.”<-Thus loading of the articular cartilage may itself play a role in the height gain by triggering a response in the subchondral bone in response to the stimulation of the articular cartilage.  Thus underlying the importance of loading the synovial joint.  The activation of MMPS and ADAMTS in the subchondral bone may play a role in neo growth plate formation.

“flexion of the joint in the presence of axial loads (5 N) increased the level of MMP-13 mRNA and its activity.”<-LSJL height growth can not be due to higher levels of MMP13 alone or axial loading would increase height!

“Whether mechanical loading can suppress or induce the integrated stress response is largely dependent on the loading intensity. This stress response leads to translational de-activation by a mechanism involving phosphorylation of eIF2α, with preferential translational activation of a particular set of proteins linked to cellular survival or apoptosis. In cultured chondrocytes, administration of thapsigargin and tunicamycin induces stress to the endoplasmic reticulum, which triggers an integrated stress response. In this response, the level of phosphorylated eIF2α was elevated together with the expression of MMP-13. Joint loading reduced the level of phosphorylated eIF2α by suppressing activity of Perk, one of the four known eIF2α kinases”

Substance P impact on endochondral ossification

All this may have an impact on LSJL but I’m not sure what it is yet.  However, nerves are something that you can feel.  However, different nerves have different effects so it’d be hard to gauge what the effect is.  But as alluded to in the study reduced pain sensitivity is a sign of reduced substance P and SNF.  So if you have reduced pain sensitivity due to LSJL you may have less SP and SNF.  The reduced mechanical stability may be beneficial to neo-growth plates also.  However, mesenchymal stem cells and chondrocytes stained heavily for SP so enhanced pain sensation may be more indicative of the success of LSJL.

Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification.

substance P pdf<-Read the full study.

“Sensory and sympathetic nerve fibers innervate bone and epiphyseal growth plate. The role of neuronal signals for proper endochondral ossification during skeletal growth is mostly unknown. Here, we investigated the impact of absence of sensory neurotransmitter substance P (SP) and removal of sympathetic nerve fibers (SNF) on callus differentiation, a model for endochondral ossification in adult animals, and on bone formation.
In order to generate callus, tibia fractures were set in the left hind leg of wild type (WT), tachykinin 1-deficient (Tac1-/-) mice (no SP) and animals without sympathetic nerve fibers. Locomotion was tested in healthy animals and touch sensibility was determined early after fracture. Callus tissue was prepared for immunofluorescence staining for SP, neurokinin1-receptor (NK1R), tyrosine-hydroxylase (TH) and adrenergic receptors α1, α2 and β2. At the fracture site, osteoclasts were stained for TRAP, osteoblasts were stained for RUNX2 and histomorphometric analysis of callus tissue composition was performed. Primary murine bone marrow derived macrophages (BMM), osteoclasts and osteoblasts were tested for differentiation, activity, proliferation and apoptosis in vitro. Femoral fractures were set in the left hind leg of all three groups for mechanical testing and μCT-analysis.
Callus cells stained positive for SP, NK1R, α1d- and α2b adrenoceptors and remained β2- adrenoceptor and TH-negative. Absence of SP and SNF did not change general locomotion but reduces touch sensitivity after fracture. In mice without SNF, we detected more mesenchymal callus tissue and less cartilaginous tissue 5days after fracture{so more sympathetic nerve fibers are pro-differentiation?}. At day 13 past fracture, we observed a decrease of the area covered by hypertrophic chondrocytes in Tac1-/- mice and mice without SNF, a lower number of osteoblasts in Tac1-/- mice and an increase of osteoclasts in mineralized callus tissue in mice without SNF. Apoptosis rate and activity of BMM, osteoclasts and osteoblasts isolated from Tac1-/- and sympathectomized mice were partly altered in vitro. Mechanical testing of fractured- and contralateral legs 21days after fracture, revealed an overall reduced mechanical bone quality in Tac1-/- mice and mice without SNF. μCT-analysis revealed clear structural alteration in contralateral and fractured legs proximal of the fracture site with respect to trabecular parameters, bone mass and connectivity density. Notably, structural parameters are altered in fractured legs when related to unfractured legs in WT but not in mice without SP and SNF.
The absence of SP and SNF reduces pain sensitivity and mechanical stability of bone in general. The micro-architecture of bone is profoundly impaired in the absence of intact SNF with a less drastic effect in SP-deficient mice. Both sympathetic and sensory neurotransmitters are indispensable for proper callus differentiation. Importantly, absence of SP reduces bone formation rate whereas absence of SNF induces bone resorption rate{maybe this could be beneficial as bone resorption would leave room for neo-growth plates}. Notably, fracture chondrocytes produce SP and its receptor NK1 and are positive for α-adrenoceptors indicating an endogenous callus signaling loop. We propose that sensory and sympathetic neurotransmitters have crucial trophic effects which are essential for proper bone formation in addition to their classical neurological actions.”

“Under rigid, stable fixation regimen, bone regenerates with no or only minor callus formation”

“When applying more flexible fixation regimens, bone healing occurs in consecutive stages which involve intense callus formation. Firstly, an acute inflammatory response and recruitment of mesenchymal stem cells (mesenchymal callus) occur in order to subsequently generate a primary cartilaginous callus populated mostly with chondrocytes (soft callus). Later, this cartilaginous callus undergoes revascularization and calcification (calcified hard callus) and is finally remodeled to fully restore a normal bony structure and architecture”<-The idea with LSJL is that perhaps the accute inflammatory respose and recruitment of mesenchymal stem cells can occur without a fracture.

“SP plays a role in pain transmission; tibial fractures cause an early and strong induction of sensory nerve regeneration and growth into the site of injury (sensory sprouting). The presence of NK1 receptors was demonstrated on bone cells”  SP can also affect proliferation in mesenchymal stem cells.

“skeletal growth or activity of bone tissue might be regulated by SNF”

“At day 5 after fracture, when chondrogenic differentiation starts, a substantial number of mesenchymal and chondrocyte-like cells stained positive for NK1R and some cells double-stained for SP. At day 9 after fracture, when most of the callus matrix has adopted a cartilaginous phenotype (soft callus), nearly all of the callus chondrocytes were SP- and NK1R-positive. At 13 days after fracture, when remodeling of the callus progressed toward tissue mineralization and the bony, hard callus was about to be formed, number of SP-positive callus cells appeared to be reduced compared to day 9 but NK1R staining seems to be unaltered in hypertrophic chondrocytes. SP- and NK1R staining pattern in sympathectomized mice was similar to WT”

“mesenchymal callus cells and periosteum stained positive for α1d adrenergic receptor 5 days after fracture whereas only few chondrocyte-like cells were α1d-positive”

Insight into cellular senescence(Why you stop growing)

Growth plate cellular senescence preceeds epiphyseal fusion.  It is the reason why people stop growing.  If we stop cellular senescence we can keep growing.  And this study states that stem cell growth is not based on demand.  Demand for stem cells too high to be kept up with may lead to cancer growth.  However, supplements, reduction of environmental stressors, and mechanical loading may be some ways to stimulate stem cell health and renewal.  The key to LSJL success on restoring growth renewal may be based on it’s ability to stimulate stem cell proliferation and impair cellular senescence.  As this study suggests that microcracks that occur during old age increase the demand for stem cells but the body doesn’t generate new stem cells or increase proliferation to compensate.  However, unlike microcracks due to degradation LSJL places forces directly on the cells themselves.  I will be posting some updates on the LSJL method as soon as the comments section is up(after Michael has resolved some legal issues).

Age-specific bone tumour incidence rates are governed by stem cell exhaustion influencing the supply and demand of progenitor cells

“Knudson’s carcinogenic model, which simulates incidence rates for retinoblastoma, provides compelling evidence for a two-stage mutational process. However, for more complex cancers, existing multistage models are less convincing. To fill this gap, I hypothesize that neoplasms preferentially arise when stem cell exhaustion creates a short supply of progenitor cells at ages of high proliferative demand. To test this hypothesis, published datasets were employed to model the age distribution of osteochondroma, a benign lesion, and osteosarcoma, a malignant one. The supply of chondrogenic stem-like cells in femur growth plates of children and adolescents was evaluated and compared with the progenitor cell demand of longitudinal bone growth. Similarly, the supply of osteoprogenitor cells from birth to old age was compared with the demands of bone formation. Progenitor cell demand-to-supply ratios are a good risk indicator, exhibiting similar trends to the unimodal and bimodal age distributions of osteochondroma and osteosarcoma, respectively. The hypothesis also helps explain Peto’s paradox and the finding that taller individuals are more prone to cancers and have shorter lifespans. The hypothesis was tested, in the manner of Knudson, by its ability to convincingly explain and demonstrate, for the first time, a bone tumour’s bimodal age-incidence curve.”

“Osteochondroma is the most common benign bone tumour, occurring as an abnormal osteocartilaginous outgrowth of the epiphyseal growth plate with a low rate (≤2%) of malignant transformation to secondary chondrosarcoma”

“In adolescents, growth plate senescence is followed by epiphyseal fusion when osteochondroma stop growing.”

“Osteosarcoma is the most common primary bone malignancy (excluding multiple myeloma), originating from the transformation of aberrant bone-forming mesenchymal stem cells (MSC), also known as marrow stromal cells”

“Differentiation is impaired by replicative senescence”

“Post-natal stem cell replication leads to telomere shortening in somatic tissues, as telomerase activity in humans is not at sustaining levels. At the Hayflick limit of cell division, telomeres reach a critical length, triggering cells to become senescent or apoptotic. A recent publication provides quantitative evidence that soft tissue organ mass loss in humans aged 25–70 is significantly associated with the log of shorter cell turnover times, implicating stem cell exhaustion and replicative senescence in normal ageing”

“MSC, like other stem cells, have been observed to have a self-renewal and proliferative capacity that diminishes with age, and that is regulated by different pathways, such as antioxidant defence, DNA repair, and protein turnover, before entering a senescence-associated proliferation arrest”

“There is a normal trade-off for a stem cell to self-renew or produce differentiated and differentiating progeny. High stem cell demand relative to supply appears to produce stem cell progeny with stopped differentiation but with self-renewal properties, perhaps triggered by senescent cell secretions”

Here’s a graph describing the stem cell pool:

stem cell pool

“A good marker of the skeletal demand for osteoprogenitors involved in bone formation (as opposed to osteoclast bone resorption activity) is serum BALP activity. This marker is particularly sensitive to physiological changes such as adolescent growth spurt and menopause. The demand for progenitor cells participating in bone formation, as measured by BALP activity, is highest in newborns, slowly declines until early adolescence in girls and late adolescence in boys, then decreases rapidly to its lowest level in young adults, before increasing again in the latter half of adulthood to cope with the decline in osteocyte density and repair of accumulated damage related to ageing, e.g. bone microcracks”

“senescent cells can arise due to “epigenetic senescence” (initiated by histones altering activity of genes), stress-induced senescence or replicative senescence”<-Stress-induced sensescence is the easiest to avoid and epigenetic senescence can be affected by supplements.  Replicative senescence may be influenced by mechanical loading.

“cell proliferation is not in itself a risk factor for tumogenesis; instead, neoplastic promotion or progression occurs preferentially when, for example, stem cell exhaustion creates a short supply of progenitor cells at ages of high mitogenic demand.”

” Ionizing radiation exposures produce free radicals and reactive oxygen species that excite a high proliferative demand on MSC involved in inflammation and subsequent fibrosis. When bone marrow is subjected to a high dose, there is an increase in expression of the ageing and senescent cell biomarker p16INK4a reducing the capacity for stem cell renewal and, consequently, causing a decline in cellularity commensurate with premature ageing”

new study from LSJL authors

Predicting and Validating the Pathway of Wnt3a-Driven Suppression of Osteoclastogenesis.

“we examined Wnt3a-driven regulation of osteoclast development. Mouse bone marrow-derived cells were incubated with RANKL in the presence and absence of Wnt3a. Using microarray mRNA expression data, we conducted a principal component analysis and predicted transcription factor binding sites (TFBS) that were potentially involved in the responses to RANKL and Wnt3a. The principal component analysis predicted potential Wnt3a responsive regulators that would reverse osteoclast development, and a TFBS prediction algorithm indicated that the AP1 binding site would be linked to Wnt3a-driven suppression. Since c-Fos was upregulated by RANKL and downregulated by Wnt3a in a dose-dependent manner, we examined its role using RNA interference. The partial silencing of c-Fos suppressed RANKL-driven osteoclastogenesis by downregulating NFATc1, a master transcription factor of osteoclast development. Although the involvement of c-Myc was predicted and partial silencing c-Myc slightly reduced the level of TRAP, c-Myc silencing did not alter expression of NFATc1. Collectively, the presented systems-biology approach demonstrates that Wnt3a attenuates RANKL-driven osteoclastogenesis by blocking c-Fos expression and suggests that mechanotransduction of bone alters the development of not only osteoblasts but also osteoclasts through Wnt signaling.”

LSJL upregulates c-Fos.  In all likelihood LSJL alters Wnt3a expression but there wasn’t any evidence in the LSJL gene expression studyFluid flow upregulates Wnt3a and LSJL does involve fluid flow although this was only in osteocytes and we’d want to know the effects on stem cells or chondrocytes for height growth purposes.  No evidence that LSJL alters Nfatc1 expression but it likely does and Salubrinal alters Nfatc1 expression.  According to a diagram, from that study LSJL would increase Nfactc1 expression but it reduces levels of phosphorylated eif2a.

“Wnt5a activates noncanonical Wnt signaling through a receptor tyrosine kinase-like orphan receptor and stimulates osteoclastogenesis. Wnt10b is required for maintenance of mesenchymal progenitors, and its deficiency leads to loss of bone mass. Wnt14 enhances endochondral ossification and accelerates chondrocyte maturation”<-Wnt14 may alter height.  However, Wnt14 does suppress chondrogenic genes and I couldn’t find any studies stating that Wnt14 transgenes or knockout causes overgrowth or undergrowth.  Genetic association study of WNT10B polymorphisms with BMD and adiposity parameters in Danish and Belgian males., says that Wnt10b may have an effect on height but more testing needs to be done.

“Mouse bone marrow cells isolated from long bones (femur and tibia) as well as RAW264.7 mouse pre-osteoclast cells [were used in the study]”.  If mouse bone marrow cells were used it may have ramifications for how stem cells are affected by stimuli and finding the right stimuli is the key for height growth.

“Administration of RANKL to bone marrow cells significantly increased the number of TRAP-positive multi-nucleated cells{osteoclast cells are trap-positive}. In response to 100 or 200 ng/ml of Wnt3a, the number of TRAP-positive cells was reduced in a dose-dependent manner. The observed suppression of osteoclast development by Wnt3a was associated with a decrease in the phosphorylated form of β-catenin (p-β-catenin) as well as NFATc1 ”

“Wnt3a-induced reduction of the relative mRNA expression levels of the genes (NFATc1, TRAP, OSCAR, MMP9, and cathepsin K) linked to osteoclastogenesis on days 1 and 2 in bone marrow cells”<-Note that none of these levels were lower than control(The cells that were not exposed to RANKL) and the reduction was dose dependent until at least 200ng/ml.

Wnt3a downregulates C-Fos and C-Fos may be an important part in LSJL induced growth.

Wnt3a upregulated Egr1, Notch1, and Tgif1 at greater levels than control so excess levels of Wnt3a may have an effect on stimulating on those genes even without altering cells exposed to RANKL.  It downregulated Hmga1, Smad3, Dnmt3a, and Bach1 versus control.  Smad3 is involved in TGF-Beta induced chondrogenesis.  Dnmt3a promotes DNA methylation.

Growth Plate Repair

RECENT RESEARCH ON THE GROWTH PLATE: Mechanisms for growth plate injury repair and potential cell-based therapies for regeneration

“[The growth plate] functions to produce a mineralised cartilaginous scaffold to which new trabecular bone is formed via a tightly controlled two-step process (called endochondral ossification) involving chondrogenesis and osteogenesis ”

“The resting zone has previously been thought to play a very minimal role during endochondral ossification as the pre-chondrocytes/cells within this zone proliferate minimally. However, studies have indicated the importance of the resting zone as it acts as a reservoir of stem cells/pre-chondrocytes for the chondrocytes in the adjacent proliferative zone”

“The proliferative zone is responsible for matrix production (including collagen-2 and aggrecan) and cellular division during endochondral ossification. The height of the proliferative zone directly correlates with the extent of longitudinal growth that can be achieved by the long bone. As regulated by various signalling pathways including parathyroid hormone-related protein, insulin-like growth factor (IGF1), bone morphogenic protein (BMP), Wnt/B-catenin, fibroblast growth factor (FGF) and others , chondrocytes cease to proliferate and become hypertrophic. The hypertrophic chondrocytes produce collagen-10 which is involved with matrix mineralisation. Together with the action of angiogenic factor vascular endothelial growth factor (VEGF) produced by hypertrophic chondrocytes and a low oxygen tension, the lower hypertrophic zone attracts blood vessel invasion from the adjacent metaphyseal bone, which brings along mineralised cartilage-resorptive cells (chondroclasts), bone-forming cells (osteoblasts) and bone-resorptive cells (osteoclasts) to convert the mineralised cartilage scaffold into trabecular bone in metaphysis.”

growth plate injury repair

“The initial inflammatory response involves an influx of key inflammatory cells into the growth plate injury site and up-regulation of inflammatory cytokines/mediators and some growth factors (A). The fibrogenic phase involves an influx of fibrogenic and progenitor cells containing MSC-like cells (B). The osteogenic phase involves the osteogenic and chondrogenic differentiation, formation of bony trabeculae together with angiogenesis within the injury site (C). The remodelling phase involves the maturation and active remodelling of the newly formed bony trabeculae as well as disappearance of cartilaginous repair tissue (D).”<-Cinc1 is also known as IL8 or CXCL1{Which is upregulated by LSJL}

“neutrophil-mediated inflammatory response was found to modulate downstream injury repair events. Following the depletion of neutrophils with a neutralising antibody, an increase in the undesirable bony repair tissue [occurred] with increased expression in bone-related genes such as Runx2 and osteocalcin, but decreased expression in cartilage-related genes Sox9 and collagen-2 ”

“Blocking TNFa resulted in a clear delay in the subsequent mesenchymal infiltration response and a reduction of the proliferation of these cells”

“At the growth plate injury site, some of these cells were found to express growth factors including BMPs, platelet-derived growth factor (PDGF) and FGF2 and receptors for BMPs and PDGF. In addition, some of these cells were found to be MSC like as they expressed the stem cell marker alpha-smooth muscle actin{acta2 which is upregulated by LSJL}”

“this influx of mesenchymal cells may contain a myriad of cells including MSC-like cells, osteoprogenitor cells, pre-osteoblasts, and/or pre-chondroblasts (either pre-existing or newly derived from the infiltrated MSCs).”

“significant peak in the mRNA expression of platelet-derived growth factor (Pdgf) and fibroblast growth factor 2 (Fgf2){up} following the initial inflammatory phase, suggesting a potential regulatory role for these two growth factors during this phase”

“In rats with growth plate injury, the inhibition of PDGF signalling caused a significant reduction in the amount of mesenchymal infiltrate, decreased amounts of bony and/or cartilage repair tissues, and thus an overall delay in bony repair 14 days post-injury”

“At the injured growth plate, bone formation has been observed to commence around day 7 with the appearance of bony trabeculae, and bone remodelling has been observed by day 14 with the appearance of bone marrow cells in between bony trabeculae”

“During the osteogenic phase of the growth plate injury repair process, the cells within the fibrogenic infiltrate differentiate into Runx2 and alkaline phosphatase-immunopositive osteoblasts and produce increased levels of bone matrix protein osteocalcin (both mRNA and protein) during days 8–14”

“after a ‘fibrous tissue’ is formed from the infiltrated stromal cells at an injured growth plate, its invasion by new blood vessels is a prerequisite for its osseous transformation”

“the absence of VEGF delayed bone formation by halting the initial soft callus from being converted into hard bony callus. ”

“osterix over-expression can induce bone healing”

“PKD up-regulates osterix and [is] important for osteoblast differentiation. Inhibition of PKD suppressed bony repair but induced more chondrogenic differentiation at the injury site”

“over-expression of osterix in osteochondroprogenitor cells resulted in a decrease in chondrogenic transcription factor Sox9.”

“In a rat tibial drill hole growth plate injury model, levels of Bmp2 mRNA expression were found notably increased in the early part of the fibrogenic phase and then again later during the osteogenic phase”

“synovium-derived MSCs in particular had the greatest capability to enhance the chondrogenic differentiation potential when compared with any other mesenchymal tissue-derived cells. However, other studies have reported that bone marrow-derived MSCs (BMMSCs) are most suitable for cartilage tissue engineering, as they possess higher proliferation rates and higher levels of expression of cartilage-specific genes, when compared with MSCs derived from other tissues”

“MSCs were successfully isolated directly from murine epiphysis.  This novel type of MSCs could potentially be better than BMMSCs as they have shown greater capacities in growth and differentiation potential as well as possessing immunosuppressive and anti-inflammatory properties”

LSJL Studies 3: Lengthening of mouse hindlimbs with joint loading

This is the most significant LSJL study to date.

Three key takeaways from this study:

1) LSJL increases bone length in existing growth plates via traditional mechanisms(chondrocyte hypertrophy)

2) LSJL increases bone length in non-traditional mechanisms as shown by the fact that LSJL also stimulates the reserve zone.  Reserve zone cells being the chondrocyte precursor cells and the ones able to form new growth plates.

3) LSJL dramatically alters the microenvironment of the bone(as shown by the histological slides).  It’s unclear exactly what changed but the decrease in bone trabeculae and the increase in bone marrow means that an LSJL loaded bone is more permissive to growth plate formation.  Osteomy is essential for renewed longitudinal bone growth.  As cartilage is capable of interstitial growth which induces longitudinal bone growth whereas bone is not.

Lengthening of mouse hindlimbs with joint loading

“Loads were applied to the left hindlimb (5-min bouts at 0.5 N[at 5Hz) of C57/BL/6 mice (21 mice, ~8 weeks old). Compared to the contralateral and age-matched control groups, knee loading increased the length of the femur by 2.3 and 3.5%, together with the tibia by 2.3 and 3.7%, respectively. In accordance with the length measurements, knee loading elevated BMD and BMC in both the femur and the tibia. Histological analysis of the proximal tibia revealed that the loaded growth plate elevated its height by 19.5% and the cross-sectional area by 30.7%. Particularly in the hypertrophic zone, knee loading increased the number of chondrocytes as well as their cellular height along the length of the tibia.”

3min/day for 5 days/week for 10 days total was LSJL applied.  Bone was harvested 18 days after the last loading.

“Femoral length was defined as the maximum distance from the distolateral condyle to the
most medial and proximal position on the femoral head. Tibial length was defined from the most proximal position of the tibial plateau to the most distal position of the medial malleolus.”<-this is important as changing where and how femoral length is measured would effect total femur length.  It is hard to tell the ramifications of this length setting for sure without more data though.

“The height of the growth plate (GP) was defined from the apical[apex] border of the reserve zone to the lower border of the mineralized cartilage”<-So the measurement of growth plate height would likely include not just growth plate chondrocytes but chondrocyte progenitor cells.  And you’d need chondrocyte progenitor cells to form new growth plates.

According to Artificial selection sheds light on developmental mechanisms of limb elongation, an increased number of proliferative chondrocytes is likely the cause of increased height.

“the upper boundary of the hypertrophic zone was identified at the margin of the
chondrocytes that increased their size relative to those in the proliferative zone, whereas its lower boundary was at the terminal intact chondrocytes next to the metaphysis”

“At the cellular level, the numbers of proliferative and hypertrophic chondrocytes were counted and the total number of chondrocytes was calculated as their sum. The height of hypertrophic chondrocytes was determined using at least 20 cells in each slice”

“During knee loading, no apparent damage was detected at the site of loading or injection.”

“the longitudinal length of the femur was increased by 2.3% (14.19 ± 0.28 mm in contralateral control; 14.51 ± 0.28 mm in knee loading)”

“the longitudinal length of the tibia was increased by 2.3% (16.68 ± 0.23 mm in contralateral control; 17.06 ± 0.21 mm in knee loading)”<-interesting that the percent increase is so comparable(both 2.3%).

“Compared to the age matched control, knee loading increased the longitudinal length by 3.5% in the femur and by 3.7% in the tibia”<-Also a very similar percentage.

In the elbow loading study, “humerus was elongated by 1.2% compared to the contralateral and age-matched controls, while the ulna had become longer than the contralateral control (1.7%) and the age-match control (3.4%)”.  In 16 week mice(see same link above), the increase in length was 1.6% in the tibia.

Here is the growth plates under LSJL(I provide a more detailed analysis here):

LSJL growth plates

“H&E-stained sections of the growth plate in the proximal tibia. a Growth plate of the contralateral control. The bracket denotes the growth plate. b Growth plate (bracket)
of the loaded tibia. c Proliferative and hypertrophic zones of the contralateral control. d Proliferative and hypertrophic zones of the loaded tibia. Bars a, b 100 micro-m; c, d 200 micro-m”

Here’s a baseline growth plate with similar colors:

resting-zone

It’s difficult to say exactly what is going on in the growth plates of the control and LSJL-loaded version but what is clear is that the micro-environment of the two bones is dramatically different.  The LSJL loaded growth plate has much more bone marrow and many more osteoclasts(the white spots; although those spots could also be adipose tissue).  The increase in bone marrow and loss of bone trabeculae would be more enabling for micro-growth plates.  Thus, LSJL could create a more favorable microenvironment for micro-growth plates.

“Histological analysis revealed that knee loading increased the height and the cross-sectional area of the growth plate in the proximal tibia. First, the total growth plate height was increased by 19.5% (175 ± 25.6 micro-m in contralateral control; 210 ± 18.1 micro-m in loading) including the heights of the proliferative zone and the hypertrophic zone. In particular, the height of the hypertrophic zone was extended by 33.6% (48 ± 4.6 micro-m in contralateral control; 65 ± 3.4 micro-m in knee loading). Note that the height ratio of the hypertrophic zone to the growth plate (HZ/GP) was significantly increased, whereas the ratio for the proliferative zone (PZ/GP) was not altered”

“the cross-sectional area of the growth plate was increased by 30.7% (0.263 ± 0.108 mm2 in contralateral control; 0.344 ± 0.095 mm2 in knee loading)”

“At the cellular level, the numbers of chondrocytes were increased in the total growth plate and the hypertrophic zone by 28.5% and 46.3%, respectively. In the proliferative zone, however, no statistically significant difference in the numbers of cells was detected”

“the height of individual chondrocytes in the hypertrophic zone was elevated in the loaded side (16.3 ± 1.67 micro-m) compared to the control side (13.0 ± 1.45 micro-m)”

“oscillatory loads laterally applied to the knee not only induce anabolic responses but also lengthen the femur and the tibia.”<-Interesting that they do not state the necessity of an existing growth plate in this statement although admittedly this is not strong evidence.

The total length increase in the growth plate was more than the sum of the increases in the proliferative and hypertrophic zones, indicating that other regions such as the resting and calcifying zones were also affected“<-This is huge as the resting zone is where chondrocyte progenitor cells are derived.  If LSJL can induce mesenchymal stem cells to become chondrocyte progenitor cells than it can create new growth plates.

“Because the cross-sectional area of the growth plate is significantly increased with knee loading[the growth plate is wider], the data support that the bone-lengthening effects are not limited only to the lateral or medial loading site. At the cellular level, the number of chondrocytes in the hypertrophic zone was increased together with their cellular height. Our results are consistent with the notion that dynamic tensile and compressive loads stimulate and suppress longitudinal growth, respectively”

“In knee loading, the rate of lengthening with 0.5 N loads (peak-to-peak) was 0.1% per bout (femur) and 0.1% per bout (tibia) for 5-min loading per day.”

“both loaded and contralateral hindlimbs increased in length in the tibia.”