Using Extracorporeal Shockwave Lithotripsy or Lasers To Create Minimally Invasive Microfractures To Lengthen Cortical Bone
Recently I went back on the kick to learn medicine again, and I was told by a post/article written on the medical website KevinMD (Available Here) to read the following three medical memoir type books, which supposedly most medical students have read, or will read at some point. So I bought two of them through Kindle and started to read over them. The books are…
- Mountains Beyond Mountains: The Quest of Paul Farmer, a Man Who Would Cure the World – by Tracy Kidder
- Complications – by Atul Gawande
- My Own Country – by Abraham Verghese
The third book didn’t interest me that much since I have done research with a startup company years ago on an HIV Vaccine used in cocktails. The other 2 books were much more interesting. It was in the book Complications by Atul Gawande, who talks about how residents and interns who choose the surgical path still make mistakes and will always need to force themselves to practice in a trial and error mode to learn how to perform various medical techniques properly.
One thing he mentioned in the book was how his father was also a physician, a urology. Apparently his father had to learn over the decades after he had finished his residency to use a type of medical device called a Lithotripter. There was three types Atul would mention.
- Shock-wave Lithotripter
- Electrohydraulic Lithotripter
- Laser Lithotripter
I did not do much research on the other two types, but it was shockwave lithotripters or what is known as extracorporeal shockwave lithotripsy that got me interested.
I know that all of these techniques are used to destroy or treat kidney stones or disorders with similar problems. The laser seems to focus just a strong intense beam of light to pulverize the kidney stone. I am not sure how the electrohydraulic lithotripters would work.
The way the shockwaves would work is that multiple beams of low intensity from various angles beam towards one spot inside the human body. When all the beams are focused on one exact area, the concentration of energy, like the plasma, can destroy tissue.
Here is my proposal. If I remember correctly, kidney stones have a composition which is primarily of a type of calcium crystal, calcium oxalate. The oxalate may not have the type of strength and toughness, or binding power, like the calcium phosphate or hydroxyapatite found in the cortical bone ECM, but I suspect that we can still break up tougher calcium deposits (ie the hydroapatites) and accumulations of calcium crystals if we increased the intensity of the multiple shockwaves coming from different directions.
When the shockwaves come together and focus on one area, they can cause micro-fractures in the cortical bone layer, which would mean that we have a chance to either pull the entire bone longer, or let the progenitor stem-like cells from the bone marrow and/or from the periosteum come along, and start to differentiate into the chondrogenic lineage.
Sky years ago talked about how if we can induce microfractures, then we might have a chance to pull the bones longer. Well, with this type of medical device, we will be able to induce micro-fractures at will and at whatever angle, or distance we wish for.